INVITED REVIEW

Blindsight in man and monkey

Petra Stoerig¹ and Alan Cowey²

¹Institute of Medical Psychology, Ludwig-Maximilians-University, Munich, Germany and ²Department of Experimental Psychology, Oxford University, Oxford, UK

Correspondence to: Petra Stoerig, Institute of Medical Psychology, Ludwig-Maximilians-University, Goethestraße 31, D-80336 Munich, Germany

Summary
In man and monkey, absolute cortical blindness is caused by destruction of the optic radiations and/or the primary visual cortex. It is characterized by an absence of any conscious vision, but stimuli presented inside its borders may nevertheless be processed. This unconscious vision includes neuroendocrine, reflexive, indirect and forced-choice responses which are mediated by the visual subsystems that escape the direct cerebral damage and the ensuing degeneration. While extrastriate cortical areas participate in the mediation of the forced-choice responses, a concomitant striate cortical activation does not seem to be necessary for blindsight. Whether the loss of phenomenal vision is a necessary consequence of striate cortical destruction and whether this structure is indispensable for conscious sight are much debated questions which need to be tackled experimentally.

Keywords: cortical blindness; blindsight; residual vision; phenomenal vision; visual system

Abbreviations: dLGN = dorsal lateral geniculate nucleus; OKN = optokinetic nystagmus; PGN = pregeniculate nucleus; ROC = receiver-operating-characteristic curve

Introduction
‘A survey of the recent literature indicates that the rôle of the occipital lobes in visually guided behavior in general cannot be properly evaluated as long as investigators are satisfied with studying only a few visual functions. Because certain visual functions have often not been studied at all and others only incompletely, the experimental data necessary for elucidating the character and the variety of visual disturbances in occipital cases are at present frequently lacking.’ Kluver, who studied the visually guided behaviour of monkeys with surgical removal of the visual cortex, wrote this critical assessment in 1941 (p. 23). In the half century since then, the phenomenon of blindsight as a processing of visual information that is not consciously represented has been established in both man and monkey. Exploring its properties now offers a means of studying the full range of behaviour possible on the basis of unconscious vision, a task which is far from being completed. Nevertheless, from our present knowledge of what can and cannot be done with blindsight alone, we can already draw some tentative conclusions regarding the functions of conscious vision. Revealing the neuronal basis of blindsight is a means of gaining a better understanding of how the visual system works and, by exclusion, of getting a hold on the neuronal correlate of conscious vision. Indeed, whether and in what way primary visual cortex is necessary for blind and conscious vision is currently much debated. Views on the consequences of its destruction now encompass the gamut of possibilities: absence of conscious vision, absence of blindsight and absence of blindness.

Visual functions after striate cortical destruction

Background
Vascular incidents, traumata and tumours are the commonest causes of damage to the striate cortex and its geniculate afferents. Both destruction and deafferentation produce homonymous visual field defects contralateral to the side of the lesion. The field defects are perimetrically determined and clinically classified with respect to their extent, their position in the field, and their density. In a relative defect,
the patient consciously sees certain stimuli. Most commonly, high contrast stimuli that move or flicker are perceived while form and colour vision are absent (Riddoch, 1917; Holmes, 1918). In rare cases (sometimes following carbon monoxide poisoning) colour perception can be selectively spared (Rovamo et al., 1982; Milner and Heywood, 1989; Humphrey, 1996). Relatively impaired or amblyopic zones in which patients have conscious residual vision (not blindsight) often surround or flank absolute field defects (e.g. Holmes, 1931) where stimuli are not seen at all. In the definition of Wilbrand and Sängè (1904), absolute defects are areas where ‘alle und jegliche Empfindungsqualität, also Helligkeit und Farbempfindung, ausgefallen ist und absolut nicht mehr hier empfunden wird’ (p. 353). It is noteworthy that already here the lack of ‘all and any sensory quality’ is used to define the absoluteness of the field defect; it is not an absence of all visual function that characterizes a post-geniculate visual field defect.

Attempts to elucidate the possibility and extent of residual visual functions remaining in patients with damage to the occipital lobe were focused on two approaches. One was to use reflexive responses, notably the pupil light reflex and optokinetic nystagmus (OKN), and the other was to explore residues of conscious vision which were established by asking the patients what, if anything, they saw in response to stimulation of the defective fields (e.g. Bard, 1905; Bender and Krieger, 1951; Brindley et al., 1969).

The second approach was not an option in the study of animals. Here, non-verbal behavioural responses were used to uncover non-reflexive functions in monkeys with extensive occipital cortical ablations. It was on the basis of such experiments, notably those of Klüver (1941, 1942), the Pasiks (for review, see Pasik and Pasik, 1982), Weiskrantz and Cowey (for review, see Weiskrantz, 1986), and their colleagues, that similar non-verbal paradigms were introduced into the study of patients. Richards (1973) demonstrated a residual crude stereoscopic mechanism operating in cortically blind fields. That same year, Pöppel et al. (1973) reported that patients with absolute field defects could direct their eyes towards the approximate position of a briefly presented stimulus they had not seen. Weiskrantz and colleagues (Sanders et al., 1974; Weiskrantz et al., 1974) tested several residual visual functions that included localization and shape discrimination in a patient with a surgical ablation of primary visual cortex. They also used forced-choice methods, and coined the term ‘blindsight’ to account for the residual visual properties they demonstrated. Note that blindsight as we use it here is not synonymous with the term ‘residual visual functions’; in blindsight the stimuli are not consciously seen; in contrast, residual vision can be conscious.

Thus visual functions were discovered which were neither automatic, reflexive responses to visual stimulation nor residual conscious processes. Further demonstrations and increasing knowledge of the massively segregated retinofugal pathways have lent credibility to the phenomenon of ‘blindsight’ which has become a prime example of an ‘implicit process’, a non-reflexive function elicited by a stimulus that is not consciously represented.

Levels of blind visual functions

Here we shall present the evidence that demonstrates the presence of blind visual functions in patients and monkeys with destruction or deafferentation of the primary visual cortex. Four levels of visual processing will be distinguished.

Patients

Neuroendocrine responses. The lowest level of visual processing is that of neuroendocrine responses. A good example is that of melatonin suppression in response to exposure to bright light which has been elicited even in some patients blinded by retinal pathology (Czeisler et al., 1995). These patients show no pupillary response to light, and report not even a dim visual impression, but the neuroendocrine response is still demonstrable. It is probably mediated via a small sub-population of retinal ganglion cells which continues to project directly to the hypothalamus (Moore et al., 1995a).

Reflexive responses. The reflexive responses constitute the next level of function. To a different extent they, too, remain after post-geniculate damage. The pupil continues to respond to changes in illumination (Magoun and Ranson, 1935; Bender and Krieger, 1951; Brindley et al., 1969) (see Fig. 1), to spatial (Weiskrantz, 1990) and at least in some patients to spectral information (P. Stoerig, J. L. Barbur, A. Sahraie and L. Weiskrantz, unpublished data). The photic reflex can be elicited when a light is flashed (Bender and Krieger, 1951; Hackley and Johnson, 1996), and the eyes move with a moving visual scene (Braak et al., 1971; van Hof-van Duin and Mohn, 1983; Pizzamiglio et al., 1984; Heide et al., 1990). Results of tests of OKN are controversial (for discussion see Verhagen et al., 1996). Its subcortical component (i.e. passive OKN) has been found to persist in patients with unilateral brain damage (Heide et al., 1990) up to, and including, hemispherectomy (van Hof-van Duin and Mohn, 1983; Braddick et al., 1992). In contrast, it could not be evoked in several patients with complete bilateral cortical blindness (Brindley et al., 1969; Perenin et al., 1980; Perenin, 1991), with the single exception of a patient with total cortical blindness who was studied by Braak et al. (1971). These prominent differences in the extent to which subcortical OKN persists in total cortical blindness have not been demonstrated in a sufficient number of patients with bilateral lesions to assess the likely roles of the extent of the primary lesion, its degenerative consequences, and additional subcortical damage. Apart from OKN, whose status is not clear, visual reflexes persist in the absence of functional striate cortex, although they may be sub-normal, with the pupillary constriction to light being of lesser amplitude (see Fig. 1),
its spatial tuning coarser and the eye-movements elicited by moving scenes asymmetric and sluggish.

Implicit processing. To demonstrate implicit processing of a stimulus presented within a field defect without requiring the observer to respond to it directly, its effect on the response to a seen stimulus in the normal visual field is examined. This represents the next level of visual function. If this response is altered in some way by the unseen stimulus, information from the blind field must have been processed implicitly. There are now several different examples. (i) Simultaneous or prior presentation of an unseen stimulus can significantly alter the mean reaction time to a seen stimulus (Marzi et al., 1986; Corbetta et al., 1990; Rafal et al., 1990; Cochrane, 1995). (ii) A full circle, half of which falls into the blind field, may appear more complete than a half circle which falls entirely into the good field (Warrington, 1962; Torjussen, 1976). (iii) The hue of an after image induced by fixation inside a coloured surround can change when the colour of the surround is changed, even when the change is restricted to the blind field (Pöppel, 1986). (iv) Performance in a phi-motion direction discrimination task with two consecutive stimuli flanking FS’s wedge-shaped absolute defect on its upper and lower border (see Fig. 2) improved for certain spatiotemporal conditions when a third and invisible stimulus was presented between the two visible ones. For certain spatiotemporal conditions patient F.S.’s performance improved even in the impaired hemifield when a third and invisible stimulus was presented between the two visible ones. Occasionally, the patient even reported an ability to infer motion instead of just detecting a temporal onset asynchrony between the stimuli (Stoerig and Fahle, 1995). (v) Unsuspected cognitive processing in blindsight was implied by the induction of an interpretational bias to an auditorily presented polysemous word (BANK) by a preceding presentation, in the blind field, of a word related to one of its meanings (RIVER/MONEY) (Marcel, 1983, 1997).

Implicit processing of this nature can only be demonstrated if the patients retain a functional visual field because a response to a seen stimulus is used to assess the influence of an additional unseen one.

Direct responses. In contrast to implicit processing, the direct responses which constitute the highest level of functions found after striate cortical destruction require the patient to respond directly to stimuli presented in and confined to the field defect. Investigations of direct responses that commonly
Recent data extend these findings by demonstrating that a good in same-different matches between the normal and statistically significant (e.g. Magnussen and Mathiesen, 1989; see). Patients exhibited a large range of residual functions including patients' performance ranges from chance level (e.g. Hess criterion set at 75% correct performance even in the variables such as retinal position, size, colour, onset time...). Manual responses to Efron-type shapes were at chance level, discrimination makes it implausible that the detection is... Efron figures (figures that differ neither in orientation of their sensitivity was reduced by ~0.4 to 1.5 log units (Stoerig et al., 1992; Brent et al., 1994). Only when shapes had to be discriminated, and orientation cues were excluded by using Efron figures (figures that differ neither in orientation of their borders nor in area) did blindsight fail to reach a threshold criterion set at 75% correct performance even in the extensively tested patient D.B. (Weiskrantz, 1987). D.B. exhibited a large range of residual functions including discrimination of X and O (see Fig. 3); this was particularly good in same-different matches between the normal and impaired fields (Weiskrantz et al., 1974; Weiskrantz, 1986). Recent data extend these findings by demonstrating that a hemianopic patient's deliberate and considered verbal and manual responses to Efron-type shapes were at chance level, whereas the patient's reaching and grasping movements to the same stimuli correlated well with their shape and orientation (Perenin and Rossetti, 1996).

Paradigms derived from signal detection theory (Green and Swets, 1968; Swets and Pickett, 1982) have occasionally been used in the study of direct responses because they provide a means to account for observer bias and allow a careful analysis of detectability and discriminability. In a study by Stoerig et al. (1985) receiver-operating-characteristic curves (ROCs) were determined at five positions in the cortically blind field of patient K.K., each one based on 2500 presentations. A shift in criterion was introduced by varying the ratio of target-to-blank trials. The resultant data points (five per curve) were replotted on a double probability scale to test whether the assumptions that underlie the use of parametric detectability indices [such as d' and d(A)] were satisfied. The distribution of ROC-points indicated a different variance for target and blank conditions, and the authors concluded that non-parametric measures, like the area under the curve [P(A)] or the percent correct value, provided indices less fraught with assumptions about the underlying distributions. We have since restricted ourselves to the use of these (e.g. Stoerig and Pöppel, 1986; Stoerig, 1987; Stoerig and Cowey, 1989b, 1992).

The lengthy testing required to acquire sufficient data for signal detection analysis has hindered its general application; Weiskrantz (1990) dubbed this approach 'heroic'. For similar reasons, attempts to measure sensitivity (as opposed to detectability and discriminability) in the cortically blind field are comparatively rare; after all, determining sensitivity amounts to nothing less than measuring detectability for an unknown number of luminance values. The thresholds that have, nevertheless, been measured were all elevated when compared with those of the normal visual field, although the elevation can be surprisingly small. The threshold for orientation discrimination was found to be ~ 10° as compared with 2–3° at the corresponding position in the normal half-field of patient D.B. (Weiskrantz, 1986). Wavelength discrimination thresholds ranged between 20 and 30 nm, depending on the individual and the part of the spectrum tested, as compared with a few nm at the correspondingly eccentric control position in the patients and in normal observers (Stoerig and Cowey, 1992). Grating acuity was 15.8 cycles/degree as compared with 20 cycles/degree (Weiskrantz, 1986), and as shown in Figs 4 and 5, increment threshold sensitivity was reduced by ~0.4 to 1.5 log units (Stoerig and Cowey, 1989a, 1991; Stoerig, 1993a). Depending on variables such as retinal position, size, colour, onset time and type, speed of the stimulus and level of adaptation, the patients’ performance ranges from chance level (e.g. Hess and Pointer, 1989; Stoerig, 1987) through moderate but statistically significant (e.g. Magnussen and Mathiesen, 1989; Stoerig and Cowey, 1989b) and up to 100% correct (Perenin, 1991; Weiskrantz et al., 1991, 1995; Barbue et al., 1994).

The small threshold elevation for detection or discrimination makes it implausible that the detection is based on stray light from the stimulus in the blind field. However, when grossly supra-threshold stimuli are used, this possibility must be considered. It is impossible now to assess the extent to which such effects may have contaminated the residual conscious sensitivity that was reported by early investigators such as Bard (1905); the patients’ attribution of a light source to the blind field does not suffice to rule.

Fig. 3 Shape discrimination in patient D.B. for three stimulus pairs: X versus O, square versus diamond, and square versus rectangle. Stimuli were front projected for 150 ms at 45° eccentricity on the 45° meridian. Stimulus size was 10×8° for X and O, 7.3×7.3° for the square and diamond, and 4.4×12.2° for the rectangle. The dashed line indicates the threshold which was set at 75% correct; indiscriminate responding would yield ~50% correct. (Data taken with kind permission from Weiskrantz, 1986.)
Fig. 4 Spectral sensitivity curves from the normal (open symbols) and cortically blind hemifield (filled symbols) of patient B.R. Note the clear Purkinje-shift when adaptation is changed from dark (upper two curves) to light (lower two curves), and the small loss of sensitivity in the blind field. Stimuli were 116° in diameter, and presented at 10° eccentricity on the upper oblique meridians (45° and 135°, respectively). (Data from Stoerig and Cowey, 1991.)

out such effects. Many of the more recent investigators have therefore introduced a variety of control tasks. One of the most convincing examples is to present the stimulus within the normal blind spot; provided the stimulus is smaller than the blind spot, detection (Stoerig et al., 1985; Stoerig and Pöppel, 1986; Weiskrantz, 1986, 1987; Stoerig and Cowey, 1989a; Stoerig, 1993a) and localization (Pöppel et al., 1973) fail. This receptor-free zone can also be used to measure stray light sensitivity, which then allows an assessment of its possible effects. We have used this procedure, asking patients not to guess whether or not a target has been presented, but instead to base their decision on any weak percept of light or of a halo emanating from an unseen stimulus. An example is given in Fig. 5. It demonstrates that sensitivity for a 2° circular target detected by stray light is 2–3 log units lower than sensitivity measured under identical conditions at a corresponding position in the normal field. In the specially designed Tübinger perimeter we have used for testing the patients, only 2° white stimuli could be made intense enough to be detected on the basis of stray light under light-adapted conditions in the whole field. In light-adapted conditions where performance is less likely to be contaminated by stray light the difference between sensitivity in the normal field and stray light sensitivity in the blind spot was ~3 log units (Stoerig, 1993a). The difference between sensitivity in blindsight as determined by forced-choice guessing, and stray light sensitivity was between 1.5 and 3 log units. Only a very small difference was found between stray light sensitivity determined by presenting the stimulus in the blind spot, and presenting it in the blind field but instructing the patient not to guess but to wait for some weak percept that would indicate stimulus presentation. As the optic disc is normally more reflective than the normal retina, this could indicate a change in reflectance caused by transneuronal retrograde degeneration (see below).

Monkeys

Neuroendocrine responses. While neuroendocrine responses have not been measured in monkeys with surgical ablation of the striate cortex, rapid reflexive responses have.

Reflexive responses. Several investigations reported that cortically blind monkeys retained a blink reflex and appropriate pupillary change in response to a bright light but the reports were unconvincing until Klüver (1936, 1941, 1942) demonstrated them in monkeys in which all or nearly all striate cortex was subsequently shown to have been removed. He was even able to show that frontal stimulation,
presumably stimulating the central retina, was more effective than lateral stimulation, even though the latter is more likely to fail in any spared peripheral vision (1936). Klüver also noted an absence of the blink response to a threatening gesture; however, in some presentations of a large and contrasty looming stimulus King and Cowey (1992) could elicit an avoidance response. The photic blink reflex was subsequently studied by Pasik and Pasik (1964, 1982) who demonstrated its independence of the pupil by paralysing the latter. They also showed a clear relationship between stimulus intensity and the occurrence of blinking (probability of blinking >0.9 with the most intense stimuli) and that blinking was not an artefact of heat from bright lights.

OKN was first thoroughly investigated by the Pasiks (Pasik and Pasik, 1964, 1982), with a greater range of stimulus conditions than those used by Braak and van Vliet (1963), who were the first to show that 6 months after histologically verified total removal of striate cortex, OKN was ‘not essentially different from before the operation’ (see Fig. 6). According to the Pasiks, OKN was present as little as 1 week after bilateral removal of striate cortex, with substantial recovery after 1 month, especially for stimulus velocities of 22–45°/s. The peak frequency of response was roughly halved, and OKN was abolished at velocities of 80–90°/s. Like ter Braak and van Vliet, they noted after-nystagmus. Flicker-induced nystagmus in which monocular stimulation provokes nystagmus in the direction of the stimulated eye, was essentially normal (Pasik et al., 1970).

Implicit processes. To the best of our knowledge, implicit processes have not previously been investigated with indirect methods in monkeys. We therefore include an example of one of our own unpublished experiments in which one normal and three hemianopic monkeys were trained to touch a start light near the centre of a visual display unit. This action extinguished the start light and led to the presentation of a target light in the normal left hemifield on every trial. In order to obtain a peanut or raisin, the monkey had to touch the target within its presentation time of 1 s. The target was presented immediately upon extinction of the start light, or with a delay of up to 500 ms. On half the trials, randomly selected, a second stimulus was presented in the hemianopic field at the same time as the target or preceding it by up to 500 ms. Figure 7 shows that, as in some patients with blindsight, the unseen target slowed the reaction time to the seen target, especially at the longer delays.

Direct responses. From the time of Klüver’s investigations (Klüver, 1936, 1941, 1942) it was clear that monkeys with extensive or complete removal of striate cortex were able to respond directly to visual stimuli in the corresponding parts of the visual field. Like patients with blindsight, monkeys show direct responses. They can localize visual stimuli in the cortically blind field, making manual (Keating, 1975; Feinberg et al., 1978) as well as saccadic responses (Mohler and Wurtz, 1977; Segraves et al., 1987). They can detect targets (Pasik and Pasik, 1973) and discriminate between stimuli differing in luminous flux (Klüver, 1941; Schilder et al., 1971), brightness (Schilder et al., 1971) and orientation (Keating, 1975). In contrast, they show no evidence of detecting visual stimuli in field defects caused by retinal lesions, even though the usual opportunities for detecting scattered light are present (Cowey, 1967).

Wavelength discrimination was reported by Schilder et al. (1972), Pasik and Pasik (1980) and Keating (1979) who showed that five monkeys relearned a red versus green discrimination despite substantial and randomized variation in the intensity of the broad-band stimuli following total removal of striate cortex (subsequently verified histologically). After additional removal of extra-striate areas that included areas V2, V3, V4, TEO, and even caudal IT, four of the monkeys reached at least 80% correct, and those who were switched to blue versus green achieved 70–85% correct. In contrast, Humphrey (1974) found no evidence that what to a normal observer would be red and green were discriminable irrespective of intensity for his monkey Helen. By varying the ‘brightness’ of the green Humphrey found an equivalence point where Helen’s discrimination collapsed. Curiously, this equivalence point resembled a mesopic rather than a photopic match when the targets were on a white background, but was characteristic of photopic vision when tested in a different way by detecting a green spot on a red surround.

Results from Malmo (1966) and Lepore et al. (1975) add to this puzzle by showing that after total removal of striate cortex, peak spectral sensitivity under light-adaptation is almost the same as under dark-adaptation, i.e. at ~500 nm. This indication of a loss of cone function is in contrast to the clear indication of a Purkinje-shift we could measure in our hemianopic monkeys (see Fig. 8). A difference between uni- and bilaterally destriate monkeys could underly the latter difference as the monkeys of Malmo (1966) and Lepore et al. (1975) had extensive bilateral lesions, whereas our three
Fig. 7 The effect on reaction time to a target (4°, 1 s, 20 cd/m², 10° eccentricity) in the normal left hemifield of presenting a similar but 40 cd/m² target in the right hemifield of a normal monkey (Rosie) and three monkeys with a right-sided hemianopia (Dracula, Lennox and Wrinkle). The monkeys were rewarded for touching the target in the normal left hemifield which appeared on every trial. On half the trials, an additional (irrelevant) target appeared on the right, coinciding with the left target or preceding it by up to 500 ms. This target in the hemianopic field slowed the reaction time to the left target in all monkeys, whether normal or hemianopic. (Our own unpublished data, see text for details.)

monkeys had striate cortex removed unilaterally and without extensive damage to extrastriate cortex. However, even if this difference explained the Purkinje-shift in the hemianopic monkeys, it cannot explain the differences in wavelength discrimination because all animals had bilateral lesions, with those who performed best having the largest lesions (Keating, 1979).

Equally controversial are the results of shape or pattern discrimination. Klüver (1941) showed that a destriated monkey could discriminate between a luminous square and 76 small circles of the same total area and flux, choosing the circle on 90% of trials. Klüver’s conclusion that ‘the topographical aspects of the stimulus configuration may become effective in determining the reactions’ (p. 39) was confirmed by Weiskrantz (1963) who came to regard the total length of contour as one of the discriminable features, as part of his general view that differences in total retinal ganglionic activity were the basis for much of the discrimination. That shape discrimination is, nevertheless, not an easy task to master in a cortically blind field was shown in the extensive series of experiments by the Pasiks and their collaborators [Pasik et al., 1969; see Pasik and Pasik (1982) for review]. Macaque monkeys without any striate cortex but with postoperative experience and success with a wide range of visual tasks required several thousand trials in order to relearn to discriminate between a circle and a triangle at 90% correct. Although the monkeys were subsequently unaffected in a range of control conditions where changes were introduced in the luminance or luminous flux of the two shapes, their performance was disrupted by
changing the size of the triangle or by inverting it. The difficulty of pattern discrimination was also demonstrated by Dineen and Keating (1981) when only three of their five monkeys succeeded in responding at better than 80% correct to the rewarded luminous flux equated pattern, where amount of contour, shape of sub-elements and number of corners were systematically varied. Finally, Humphrey (1970, 1974) showed that the destriated monkey Helen could discriminate between several targets that differed only in shape. However, when the discriminability of each stimulus from some standard stimulus was tested, Humphrey found that different shapes were indiscriminable when matched for salience (roughly, the extent of a stimulus’ discriminability from a standard): a 10 mm diameter red circle was indiscriminable from a 10×5 mm black rectangle, and a circle was indiscriminable from a triangle (Humphrey, 1974).

Whether this should be seen as evidence against genuine shape discrimination in bilaterally destriate monkeys (interestingly, it has never been studied in the field defects of monkeys with unilateral or extensively incomplete bilateral lesions) or whether it only demonstrates that the presence of more than one stimulus difference overtaxes the system, remains open. Certainly the monkeys show no evidence of visually recognizing complex objects (such as fruit or model snakes) in their cortically blind visual fields even after many years of experience (Cowey and Weiskrantz, 1963; Humphrey, 1974).

The diminution in detection and discrimination sensitivity in the monkeys is of the same order of magnitude as in the patients: Orientation discrimination thresholds are around 8° in bilaterally destriated monkeys, as compared with about 1° in normal animals (Pasik and Pasik, 1980) (Fig. 9). The highest resolvable spatial frequency at maximum contrast was reduced from ~40 to 12 cycles/degree (Miller et al., 1980) (Fig. 9). Sensitivity to the contrast rather than the upper spatial frequency of resolvable gratings, arguably a better guide to visual function, was reduced from ~100 to 4 at 2 cycles/degree (Miller et al, 1980, and Fig. 9). Difference thresholds (Weber fractions) for targets of different luminance shapes were indiscriminable when matched for salience but identical area were 0.2–0.3, i.e. approximately a threefold elevation (Klüver, 1941).

Increment thresholds were increased by 0.5 to 1.6 log units for achromatic (Lepore et al., 1976; Cowey and Stoerig, 1995) as well as chromatic stimuli (Cowey and Stoerig, 1995). The level of performance can approach 100% correct for supra-threshold targets (e.g. Cowey and Stoerig, 1995) (Fig. 10).

The striking similarities between the species are in contrast to the old conjectures of unbridgeable gaps between man and the other animals, often based on the doctrine of encephalization of function (for debate, see Weiskrantz, 1972), and provide the rationale for discussion of the anatomical and physiological underpinnings of blindsight on the basis of material which stems primarily from monkeys.
The functional anatomy of blindsight

Monkeys

Anatomical consequences of the lesion

The residual visual functions that have been demonstrated in the visual field defects caused by striate cortical destruction must be mediated by the visual pathways that survive the degenerative consequences of the lesion. This residual system receives its retinal input from the ganglion cells which escape transneuronal retrograde degeneration (Van Buren, 1963; Cowey, 1974). In normal monkeys the ratio of Pα : Pβ : Pγ ganglion cells is about 1 : 8 : 1, at least in the central 30° of the retina (Perry and Cowey, 1984; Perry et al., 1984). Although all three classes contribute to the surviving population their ratio becomes roughly 1 : 1 : 1 as a result of the striking and, as far as is known, selective death of Pβ cells (Cowey et al., 1989; Weller and Kaas, 1989; Niida et al., 1990). The surviving ganglion cells continue to project to the retinorecipient nuclei of the midbrain and diencephalon. A decrease in innervation density has been reported for the retinal projection to the dorsal lateral geniculate nucleus, which loses the vast majority of its projection neurons (van Buren, 1963; Miahailovic et al., 1971), and for the projection to the olivary nucleus of the pretectum (Dineen et al., 1982); in contrast, the projection to the pregeniculate nucleus hypertrophies (Dineen et al., 1982) (see Fig. 11). Projections to the superior colliculus (Dineen et al., 1982) and pulvinar nucleus appear to be unchanged (Cowey et al., 1994) (see

Fig. 9 (A) Contrast sensitivity of four macaque monkeys before (top curve) and after (bottom curve) removing all striate cortex. Filled circles give group means. Open circles show the extrapolated upper limit of spatial resolution. (B) Percentage correct responses as a function of orientation difference between a vertical and an inclined bar. Results are means for two monkeys before (left) and after (right) removal of striate cortex. Threshold for 75% correct was 1.4° versus 7.5°, respectively. [A reproduced from Miller et al. (1980), with permission from the American Physiological Society and B reproduced from Pasik and Pasik (1982) with permission from Academic Press, Orlando, USA.]

Fig. 10 (A) Percentage correct detection in a normal monkey (Rosie) and three hemianopic monkeys for 200 ms, 2° targets presented at a lateral eccentricity of ~20°. Stimulus luminance was adjusted to 0.7 log units above the threshold shown below. All monkeys perform better than 90% correct in both hemifields. Open columns, normal left field; filled columns, (blind) right field; bars indicate SEM. (Cowey and Stoerig, 1995; reproduced with permission.) (B) Binocular increment threshold luminance in the normal left (open circles) and hemianopic right (filled circles) hemifields for 75% correct performance, using the same 200 ms 2° target. Normal monkey Rosie’s sensitivity was the same in both hemifields. (Adapted from Cowey and Stoerig, 1997.)
The role of extrastriate visual cortex

Information from the degenerated retina can reach extrastriate visual areas either directly from retino-recipient subcortical nuclei, dorsal lateral geniculate nucleus (dLGN) (Yukie and Iwai, 1981; Cowey and Stoerig, 1989) and inferior pulvinar or indirectly via other retinorecipient structures (pregeniculate nucleus, olivary nucleus, accessory optic nuclei and nucleus of the optic tract). All of these project to other mid-brain structures, notably the superior colliculus, which in turn project to the dLGN and to the inferior pulvinar.

Physiological studies in anaesthetized monkeys, whose striate cortex was ablated or reversibly inactivated, indicate that the extrastriate cortical areas that form the dorsal stream retain much of their visual responsiveness (for review, see Bullier et al., 1993). In contrast, cells in the ventral stream that respond to stimulation of the blind field are only rarely encountered, despite the anatomically demonstrated sparse but widespread direct projections of a sub-set of dLGN cells to areas V2, V4, TEO, and IT. The ventral stream thus appears to be more dependent on striate cortex for its visual responsiveness. However, general anaesthesia could influence the results, and a sparse distributed population of cells like those receiving its input directly from the dLGN could elude single cell recording. Furthermore, the immediate effects of removing or inactivating striate cortex on such a sparse cortical innervation might not be a good guide to the role of an extrastriate visual pathway in a conscious alert subject months or years after striate cortical damage.

Visual responses have been recorded in dorsal extrastriate cortical areas of monkeys who had no functional striate cortex on that side (Rodman et al., 1989, 1990), and residual visual functions involving direct responses have been demonstrated in monkeys with complete removal of striate cortex. Therefore islands of spared striate cortex can neither explain the remaining cortical responsiveness nor the presence of residual visual functions in the affected hemifield of unilaterally destriated monkeys.

The role of extrastriate cortex for blindsight has also been addressed in behavioural investigations. The effects of including extensive ablation of extra-striate as well as striate cortex were examined in two monkeys in which the lobectomy was made at a caudal level such as to include what are now known as areas V2, V3, V4 and perhaps V5 (MT) (Pasik and Pasik, 1971). Both monkeys were substantially more impaired than those with less involvement of extrastriate cortex, requiring twice as many trials (6000 as opposed to 3000) to select, eventually, the more intense of two targets of equal size. When required to relearn discrimination between two targets of very different area but equivalent flux (small bright versus large dim) they still failed to reach criterion after 6000 trials, whereas monkeys with less extensive extrastriate removal relearned the task in about 600 trials.

Comparing the effects of striate removal alone and striate plus extrastriate cortical removal, Keating (1975) found that lesions including areas OA and OB left the monkeys unable to discriminate objects or to even locate and retrieve them accurately; even the retrieval of moving targets seemed more impaired in these animals. Devastating consequences of extensive extrastriate lesions alone (i.e. sparing striate cortex) have been described by Keating and Horel (1972) and Nakamura and Mishkin (1986), and explain the turn for the worse observed in the visual capacities of monkeys with lesions extending far beyond striate cortex. Klüver’s surgical procedure would have put his monkeys into this group, with the extrastriate cortical damage even including dorsal parietal

Fig. 11 (A) Photomicrograph of flat-mounted retina of a macaque monkey in which the upper half of the left optic nerve was labelled with horseradish peroxidase 4 years after removing the left striate cortex at the age of 5.5 years. The normal nasal hemiretina is densely stained, in comparison with the retrogradely transneuronally degenerated temporal hemiretina to the left of the fovea (l). (B) Higher power photomicrograph centred on the white arrowhead, also shown in A. The loss of ganglion cells is substantial. (C) Horizontal section (10 μm) in the vicinity of the fovea, through the other eye of the same monkey. The degenerated ganglion cell layer of the nasal hemiretina, normally slightly thicker than the temporal hemiretina, has been reduced to a monolayer. The section had cracked to one side of the fovea and has been realigned. (D and E) Sections of the normal and degenerated dLGN of a macaque monkey in which the striate cortex was removed unilaterally at the age of 18 months and the animal was perfused 22 months later, following an injection of [3H]proline into the eye contralateral to the ablation. Dark bands, prominent in D but faint in E, show by autoradiography, labelling of magnocellular and parvocellular layers. The pregeniculate nucleus (PGN) is both relatively and absolutely larger on the degenerated side. (F and G) Dark-field photomicrographs of the PGN showing the more prominent input to the degenerated side, some but not all of which is attributable to the normally greater labelled contralateral input. Star and asterix in D and F mark a corresponding capillary, as they do in E and B. Scale bar represents 1 mm for A, D and E; 250 μm for B and C; 625 μm for F and G. The schematic diagram shows known inputs from the eye to retinorecipient nuclei, and some of the subsequent forward projections. The right half of the figure shows the normal condition, the left half the effect of removing the striate cortex (V1). The cortical pathways exclude further projections from V2, V3, V4, V5, etc. For example, parts of the inferior pulvinar also project to V2, V3 and V4. Following removal of striate cortex the PGN expands and the ON contracts, indicated by the size of the lettering. With respect to geniculo-cortical pathways the dotted lines indicate relatively sparse projections. SCN = suprachiasmatic nucleus; MTN, LTN, DTN = medial, lateral and dorsal terminal accessory optic nuclei; NOT = nucleus of optic tract; ON = olivary nucleus. PGN = pregeniculate nucleus; SC = superior colliculus; PI = inferior pulvinar. (Our own unpublished material.)
visual areas in both the superior and inferior parietal lobules. The effects of unilateral hemidecortication on visually guided behaviour that would further elucidate the role of extrastriate cortex have hardly been assessed. One notable exception (Tusa et al., 1986) showed that this procedure abolished saccades to visual targets in the hemianopic field.

The extent to which extrastriate cortex participates in the processing of visual information from the cortically blind field obviously depends on the extent to which it is damaged; this is highly variable, even in monkeys where the lesion is deliberately inflicted. It also depends on the age at which the damage occurs, with lesions in infancy sparing more visual functions (Moore et al., 1995b; Ptito et al., 1996), possibly by preserving or prompting greater direct innervation of extrastriate cortical areas, as has been shown in cats (Payne and Cornwell, 1994). Finally, it depends on the residual function tested.

The role of subcortical nuclei

The question as to which sub-cortical nuclei are involved in which function was addressed by the Pasiks (1965, 1971) who studied the relearning of light versus no-light discrimination after bilateral removal of striate cortex, then examined the effects of additional bilateral sub-cortical lesions. To their surprise, lesions of the inferior pulvinar, or superior colliculi, or medial pretectum had no or only slight effects when compared with those of the lateral pretectum plus the accessory optic tract (and probably involving indirectly all three of its terminal nuclei). Following the latter lesion, three monkeys failed to relearn this simple discrimination in 6000 trials. Thus, while light versus no-light discrimination seems to depend on lateral pretectum and possibly the accessory optic system, localization in the cortically blind field depends on the superior colliculi. Mohler and Wurtz (1977) demonstrated that the ability to make saccadic eye movements to small brief targets, presented within a field defect produced by a partial striate lesion is abolished by a subsequent lesion confined to the retinotopically corresponding part of the superior colliculus. A similar conclusion was reached for manual localization (Solomon et al., 1981).

Physiological evidence that the superior colliculi may be involved in motion processing was provided by Rodman et al. (1990) who found that as many as half of the neurons in extrastriate area MT (or V5) retained normal directional sensitivity to visual stimuli after the striate cortex representing that part of visual space had been removed. But when the appropriate part of the retinal representation in the superior colliculus was additionally removed, their sensitivity was abolished. The superior colliculus is also implicated in the mediation of the visual functions that survive hemidecortication, because it shows much less degeneration than the dLGN, and preserved metabolic activity, at least following hemidecortication in infant monkeys (Ptito et al., 1996).

The role of the unlesioned hemisphere is difficult to assess because the vast majority of tests were carried out in monkeys with bilateral ablation. The visual functions of our monkeys, who are hemianopic are rather similar to those of bilaterally lesioned monkeys reported in the literature, with the possible exception of OKN and photopic spectral sensitivity. The OKN exhibits deficits in bilaterally destriate animals, but recovers in unilaterally destriate monkeys even following subsequent resections of almost the entire cerebral hemisphere (Pasik et al., 1959). However, combined cortical and accessory optic lesions disrupted OKN (Pasik and Pasik, 1973). Whether our evidence for a Purkinje-shift depends on the survival of a normal visual hemifield which could determine and set the adaptation level, or whether it is the limited extent of the occipital lesion, or some other critical feature, is presently unknown. Interestingly, however, our own unpublished results on wavelength discrimination are as puzzling as those of investigators who studied it in monkeys with complete cortical blindness.

Together, the results imply that whether and which cortical and sub-cortical structures are involved depends on the visual function tested, i.e. on both the stimulus presented and the response measured, and it depends on the age at which the lesion was incurred. There is no good evidence that the retinofugal projection to the superior colliculus is the sole provider of the visual information processed in blindsight.

Patients

In patients we have almost no evidence with regard to the involvement of subcortical structures in the mediation of blindsight function. This section will therefore be restricted to evidence of cortical involvement.

Unilateral occipital damage

Patient F.S. was recently studied with functional MRI (fMRI) performed while the central visual field was stimulated with an array of flickering red lights subtending \(\pm 20^\circ \times 12^\circ \). The scans showed no activation in the ipsilesional striate cortex which was deafferented by a traumatic lesion affecting left temporo-parietal areas and invading the optic radiation. In contrast, the contralesional striate cortex was strongly activated (see Fig. 12).

A PET-study of patient G.Y., who also suffered a traumatic lesion which, in contrast to F.S.’s, was largely restricted to striate cortex, similarly showed no activation within the lesioned striate cortex when a bar was moved through the affected hemifield; instead, extrastriate cortical activation in areas assumed to be involved in motion processing were responsive (Barbur et al., 1993). Extrastriate cortical visual activation was observed in both patients and is in close agreement with the physiological results obtained in monkeys.

G.Y. and F.S. are currently the most extensively studied patients with post-geniculate visual field defects, and show a broad range of residual visual functions (for G.Y. see Barbur et al., 1980; Hess and Pointer, 1989; Brent et al.,
Fig. 12 The fMRI that sampled the calcarine cortex by 4 mm sections showed no activation in the deafferented part of striate cortex of patient F.S. in response to a binocularly presented 10 Hz optic fibre array which subtended about 20°×12°; the control condition was darkness. The colour-coded activation map was superimposed onto a flow-sensitized anatomical MRI. fMRI was performed by dynamic acquisition of FLASH MRI. Data evaluation was based on pixel-by-pixel temporal correlation of MRI signal intensity changes with a reference waveform reflecting the stimulation protocol corrected for haemodynamic latencies. Further analysis employed individualized thresholding of correlation maps (Kleinschmidt et al., 1995); thus the activation map comprises areas with maximum correlation coefficients above 0.6 complemented by neighbouring pixels exceeding a coefficient of 0.3.

(Unpublished data from P. Stoerig, A. Kleinschmidt and J. Frahm.)

1994; Weiskrantz et al., 1995; Morland et al., 1996; for F.S. see Pöppel, 1985, 1986; Stoerig, 1987, 1993). Nevertheless, neither showed any evidence for visual responsiveness in lesioned or deafferented striate cortex. Together with other arguments concerning the nature of their visual function (Stoerig, 1993b; Weiskrantz, 1996), this result is incompatible with assertions that residues of striate cortex, in the form of functional ‘islands’ in lesioned V1 tissue that correspond to islands of blindsight, are both responsible and indispensable for blindsight (Campion et al., 1983; Celesia et al., 1991; Fendrich et al., 1992). Moreover, the lack of activation in G.Y.’s lesioned striate cortex, which we have recently confirmed using fMRI with its superior spatial resolution (R. Goebel, P. Stoerig, L. Muckli and W. Singer, unpublished data), is particularly interesting because G.Y., in contrast to F.S. who has blindsight, actually has (conscious) residual vision (see below for discussion).

Hemidecortication
In contrast to striate cortex, extrastriate cortex may indeed be necessary, at least for the direct (forced choice) blindsight responses. Lower-level reflexive responses such as the pupillary light response and the photic blink response persist even in coma patients (Keane, 1979), and require no cortical activation. A pupillary light reflex (Weiskrantz, 1990) as well as some subcortical OKN have been demonstrated in hemispherectomized patients (Van Hof-van Duin and Mohn, 1983; Braddick et al., 1992), indicating that neither requires functional cortex in the hemisphere subserving the blind
field. In contrast, explicit blindsight functions could depend on the presence of functional ipsilateral extrastriate cortical areas. This hypothesis is supported by the negative findings of three groups who independently studied a variety of explicit functions in the blind hemifields of patients with unilateral cerebral decortication. Two patients, tested for their ability to discriminate the direction of visual motion, performed at chance level (Perenin, 1991). Another five patients performed at chance level in a variety of tasks except when demonstrably detecting stray light with the intact hemifield (King et al., 1996) (see Fig. 13), and yet another four (plus three incompletely tested) patients showed a reduction, and other properties, of sensitivity in the blind field indicative of detection based on stray light (Stoerig et al., 1996b). Should these results, which disagree with other published data (Perenin, 1978; Perenin and Jeannerod, 1978; Ptito et al., 1987, 1991) but agree with the loss of saccadic localization in hemidecorticated monkeys (Tusa et al., 1986), prove to be the rule rather than the exception, they would imply that explicit functions actually depend on extrastriate cortex. The depleted residual visual system that escapes degeneration after hemidecortication (Walker, 1938; Peacock and Combs, 1965; Ueki, 1966; Ptito et al., 1996) would then be capable of mediating only the lower level responses, possibly up to the indirect level (Tomaiuolo et al., 1994).

Bilateral occipital damage

In normal observers, fMRI has demonstrated extensive bilateral activation in higher extrastriate cortical areas in response to unilateral stimulation (e.g. Mendola et al., 1996). Should any blindsight function following unilateral destruction of striate cortex depend on processes in the contralesional hemisphere, it should be absent, weakened, or altered in bilateral as compared with unilateral cases. However, with the already mentioned possible exceptions (OKN and Purkinje-shift), there is little evidence of marked differences between unilaterally and bilaterally damaged patients, and the same is true of monkeys. Contour discrimination, wavelength discrimination, localization, grasping for moving objects have all been demonstrated in bilaterally destriated monkeys. Complete cortical blindness is fortunately rare in human patients, but those who have been tested exhibited explicit visual functions such as motion direction discrimination (Perenin, 1991) (Fig. 14), localization and (at least temporarily) crude wavelength discrimination (Perenin et al., 1980). If the bilateral damage is incomplete, not causing total cortical blindness but sparing some ‘seeing’ field, the patients demonstrate ‘normal’ blindsight in the impaired field (e.g. Stoerig, 1987) including OKN (Heide et al., 1990). If the bilateral damage causes a relative cortical blindness, i.e. allowing some conscious residual vision, the patients may demonstrate such remarkable visual abilities as navigation in unfamiliar surroundings (Ceccaldi, 1992; Mestre, 1992).
The function of blindsight

Visual functions can persist in patients rendered blind by lesions which destroy almost the entire retinal input to the brain. The melatonin suppression in response to exposure to bright light found in patients rendered blind by retinal damage (Czeisler et al., 1995) is one example. It demonstrates that a sparse population of retinal ganglion cells which escape damage and project directly to the hypothalamus (Moore et al., 1995a), can mediate the response in the absence of any other sign of visual processing, and through this response exert influence on the patient’s circadian rhythm. In view of the massively divergent projections from the retina into the central visual system (see Fig. 11) it is not surprising that lesions in structures as distant from the retina as the primary visual cortex spare a much larger set of visual functions. They were summarized above.

These other pathways and functions can also influence behaviour, although their relevance, particularly that of the higher ones, is less obvious in patients with circumscribed visual field defects who retain normal vision in the remaining visual field. Although the blind field may, for instance, contribute to the stabilization of posture, outside the laboratory the patients use the normal visual field for seemingly all purposes of navigation, prehension, and judgement. How potentially useful the blind functions are would be better demonstrated in patients with complete bilateral cortical blindness. Fortunately, these are rare; unfortunately, their everyday impairment has hardly been studied, and only cortically blind children have been trained to use what may or may not be blindsight to guide their behaviour (Werth and Möhrenschilder, 1996). Note that rehabilitation aimed at enlarging the residues of the ‘seeing’ field is another matter because it attempts to train conscious vision, not blindsight (see below).

In monkeys, the situation is different. Helen, to cite the most thoroughly studied case with quasi-complete bilateral destruction of striate cortex, was able to orient towards, follow, grasp, detect, localize and discriminate visual objects. Apart from her excellent abilities in formal tests she could move about freely, would not bump into objects and obstacles (unless they were made of clear perspex, demonstrating the visual nature of the navigation, see Fig. 15), and often appeared normal in her spontaneous visually guided behaviour as long as she was not alarmed (Humphrey, 1974, 1992).

On learning blindsight

Like other monkeys with occipital lobectomy, Helen had to be taught to use her remaining visual abilities. That
is important, and does not occur without prompting, was pointed out by Weiskrantz and Cowey (1970), who noted that the scotoma which was behaviourally assessed in a specially designed monkey perimeter appeared to shrink with training. Summarizing their findings, they say: ‘... the ability of every animal to detect a given stimulus intensity within its field defect improved from the first postoperative testing session 1 week after surgery to the end of daily testing 6 to 9 months later ... The gradual improvement probably did not occur spontaneously, because one animal who was not tested for 2 years postoperatively showed an unchanged picture on retesting, although it did then show gradual improvement with subsequent testing’ (Weiskrantz and Cowey, 1970, pp. 243–4). We have observed precisely the same phenomenon with respect to measurements of spectral sensitivity in normal and hemianopic visual fields in monkeys. Detection thresholds in the normal field are rapidly established; those in the hemianopic field do not stabilize until weeks or months of practice (see Fig. 16).

Studies in human patients confirm the trainability of blindsight (e.g. Zihl, 1980; Bridgeman and Staggs, 1982; Zihl and Werth, 1984). Indeed, patient F.S. whom we have frequently cited, presents an extreme case of blindsight learning. For several years he showed no statistically significant detection or discrimination in our (P.S.’s) hands (e.g. Stoerig and Pöppel, 1986, patient F; Stoerig, 1987, case 8) but eventually his performance began to improve, and his sensitivity has become as good as we have yet seen, being reduced by no more than 0.3 log units under optimal conditions (Stoerig, 1993a, case 4; and see Fig. 5).

Learning of this kind requires determination and persistence. This is uncommon in studies of patients; their time is too valuable, and the tests are usually performed without extensive prior training. It is more common in behavioural studies with monkeys who have little choice, require extensive teaching to learn the required responses, and can be tested daily for months or years. The doggedness of the examiner makes a difference as well; with 8 years, Humphrey holds the undisputed record. However, we are getting closer, having now worked with the same monkeys for 6 years, and with some patients for over 10 years. This information is not just anecdotal; if protracted learning is involved, only long-term investigations can reveal the extent of the residual capacities.

The incidence of blindsight

If slow learning is involved, differences in the assessment of whether or not a patient or monkey exhibits blindsight must influence the results, and consequently the estimated incidence of the phenomenon. In monkeys the incidence is high. There are very few cases in which a monkey failed to reach criterion, e.g. two of the five monkeys tested on shape discrimination by Dineen and Keating (1981). Estimates in patients range from one (or four, depending on the criterion) out of 20 (Marzi et al., 1986) to 14 out of 22 (Weiskrantz, 1980) to six (or eight, again depending on the criterion) out of 10 (Stoerig, 1987).

Obviously the incidence will depend on several variables, including which function is tested, and what the exact
conditions are. As monkeys are slowly taught to respond to stimuli in their cortically blind field, tasks getting increasingly difficult, they have a different basis from which to start than patients, who are often just tested in one particular test. Lesion factors such as the age at lesion, its position and extent will play a part. In addition, the amount of retrograde degeneration in the retina varies markedly among individual monkeys (our observations) and may vary similarly in patients; more degeneration in the retina and elsewhere could well entail less residual function. The pattern of functions could also vary in accordance with the amount of damage to specialized extrastriate cortical areas. While all these factors apply to both species, more variation may be expected in patients who suffer ‘natural’ lesions than in monkeys, where the lesion can be restricted to striate cortex with only slight involvement of extrastriate visual areas. However, if extreme cases such as those who have no functional visual cortex left in the lesioned hemisphere are excluded, and if no additional subcortical damage complicates the picture, all of the remaining patient and monkey populations may be able to learn to use blindsight.

Visual field restitution
It is unlikely that we will soon learn whether or not this radical suggestion is true because, hitherto, attempts at training have been aimed at enlarging the seeing part of the visual field. Positive results have been reported by several groups (e.g. Zihl and von Cramon, 1985; Schmielau, 1989; Kerkhoff et al., 1994; Kasten et al., 1996). Others found an enhancement of the blind functions and/or an improvement of the strategies used to explore space with the remaining functional field, but no enlargement of its seeing portion (Bach-y-Rita, 1983; Balliet et al., 1985; Pommerenke and Markowitsch, 1989). According to the positive reports, the visual field enlargement follows certain rules: (i) it depends on where in the visual field the training takes place, being restricted to the trained part; (ii) it commences on the border with the seeing field, shrinking the absolute defect; (iii) it does not depend on the time that has elapsed since the lesion, nor on the age at lesion. While the periphery of the affected visual field is not the first to show functional improvement with training, training commonly being concentrated in the central visual field, such a pattern has repeatedly been observed in spontaneous recovery (Riddoch, 1917). It has also been observed in blindsight patients who during extended periods participated in tests of their visual functions without undergoing any formal training (Stoerig, 1997). Patient D.B. who was studied for several years by Weiskrantz and colleagues (see Weiskrantz, 1986) even recovered conscious vision in a quadrant that formed part of his initial incomplete hemianopia, indicating that its striate cortical representation may not have been removed during surgery. Whether or not an enlargement of the seeing field is possible, with or without training, in cases who have lost all their primary visual cortex in one hemisphere, is one of the important questions that need to be addressed.

What is lacking in blindsight?
If patients and monkeys with occipital lesions are capable of using visual information to steer their behaviour to such an extent, what do they lack? Is it just that form discrimination is absent, thresholds are elevated, and the information is treated in some coarser fashion? Or is the absence of conscious vision that characterizes the cortically blind field functionally important as well? How do blindsight patients describe this blindness, how do monkeys indicate that they, too, do not consciously see the stimuli they respond to?

‘A different kind of nothing’: the patients’ reports
Only because the patients claimed not to see anything when their visual field defects were stimulated, did the early investigators hold on to the view that all but reflexive visual function is impossible after striate cortical destruction. The lack of a visual experience in response to stimulation of the cortically blind field has been confirmed in many reports on blindsight. The patients ‘never reported seeing any targets’ (Poepel et al., 1973, p. 295). The patients ‘consistently, repeatedly and firmly said that they did not experience anything’ (in relation to stimulus presentation) (Stoerig and Cowey, 1992, p. 431); ‘no form of visual impression was ever reported in the hemianopic field’ (Magnussen and Mathiesen, 1989, p. 727); ‘none of the patients exposed to visual rotation in the blind field was aware of anything happening on this side’ (Pizzamiglio et al., 1984, p. 96); the patient ‘insisted that he saw nothing’ (Weiskrantz et al., 1974, p. 4); ‘none of the subjects ever saw the bars when the stimuli were delivered into their blind field’ (Richards, 1973, p. 338), ‘over and over [the patient] claimed that he had no sensation whatsoever’ (Stoerig et al., 1985, p. 596). Patient F.S. to whom we have referred repeatedly has been asked innumerable times ‘Do you see anything?’; he always said ‘No’. When probed further to find out what makes him say ‘yes’ in one and ‘no’ in another trial (concerning target detection), he was happy to conclude that ‘maybe it is a different kind of nothing’.

This is what defines the cortically blind field: an absence of any and all sensation, as pointed out by Wilbrand and Sanger (1904). Is the same true in monkeys with occipital lobe destruction? Do they experience the same absence of (conscious) vision?

‘A stimulus is no stimulus’: the monkeys’ reports
Monkeys with striate cortical ablation exhibit a large repertoire of residual visual functions in the affected part of
their visual field. Note that the response-options monkeys have been given have commonly been limited to choosing a spatial position: for target detection they had to touch the illuminated one of a pair of bulbs (Pasik and Pasik, 1971); in tests of wavelength discrimination, they had to pull-in the food-well in front of the rewarded (say red) stimulus (Schilder et al., 1972) or to reach below the positive stimulus (Keating, 1979); in spatial frequency or contour or salience discrimination, they had to respond to the grating and not the spatially homogenous stimulus of equal mean luminance (Miller et al., 1980; Weiskrantz, 1963) or to the pattern they found most salient (Humphrey, 1974); in visual field perimetry they had to press one lever when a light appeared and a different lever on blank trials (Cowey, 1963); in measurements of their residual sensitivity they had to touch the position at which a stimulus was presented (Cowey and Stoerig, 1995). None of these approaches could elucidate whether or not the monkeys experienced their hemianopic fields as blind, as the patients do.

Working long-term with our three hemianopic monkeys, we had already established their excellent ability to localize stimuli in the impaired hemifield, and had identified the luminance required for localization at ~100% correct (see Figs 8 and 10). To see how they would categorize such supra-threshold stimuli, we then introduced a signal-detection paradigm in which the monkeys responded to a stimulus in the normal hemifield by pressing its position, and to a blank trial by touching a constantly present square on the screen that indicated ‘no stimulus’. Having mastered this new task, how would they respond to detectable visual targets in the hemianopic field?

All three unilaterally destriated monkeys touched the no-stimulus area when a stimulus that yielded >90% correct performance in the localization paradigm was presented in the hemianopic field (Fig. 17). As they responded in this fashion when the stimulus in the normal hemifield was only 0.3 log above detection threshold set at 75% correct and therefore very dim, we interpret their indicating ‘blank trial’ in the hemianopic field as evidence for ‘phenomenal’ blindness, another incidence of species similarity (Cowey and Stoerig, 1995, 1997).

Consequences of the loss of phenomenal vision
Cortical blindness implies an absence of visual sensation. From the patients’ reports and the monkeys’ behaviour we conclude that blindsight is characterized by the presence of a repertoire of behaviourally demonstrable visual functions which include implicit and forced-choice responses to stimuli that are not consciously represented. Not seeing the stimuli, as claimed by both patients and monkeys, means that the visual information about contrast, intensity, reflectance and wavelength is not represented in its phenomenal form as borders, brightness, texture and colour. If qualia (the sensations of brightness, texture, colour) are available, vision is ‘phenomenal’; if they are absent, vision is ‘blind’. The

Fig. 17 Top: display used to measure detection thresholds. To start a trial, the monkey touched the central light, which was instantaneously followed by a brief 2° flash in one of the four corners of the display. Detection thresholds in the normal and hemianopic field and percentage correct with stimuli that are supra-threshold are shown in Fig. 9. Centre: display used to test the responses to stimuli that were detected in either hemifield at better than 90% correct in a signal-detection paradigm. The monkey starts each trial as before. On half the trials, no stimulus follows the pressing of the start light, and the permanently present outlined rectangle must be touched. On most of the other trials, a light appears in one of the five positions in the normal left hemifield and the monkey touches it for a reward. Occasionally the light appears in the right hemianopic field (probe). Bottom: the histograms (open, left target; cross-hatched, blank; filled, probe) show that the three hemianopic monkeys, but not the unoperated monkey, respond to probe trials as if they were blanks, i.e. they almost always press the rectangle. [Reprinted from Cowey and Stoerig (1995) with permission from Macmillan Magazines Ltd.]
presence of phenomenal vision distinguishes between cortical blindness and psychic blindness or agnosia; it is absent in the former and present in the latter. As patients with severe visual agnosia lack both object vision and recognition, but still see qualia (consciously, phenomenally), phenomenal vision appears to be the lowest form of conscious vision (Stoerig, 1996).

The commentaries of blindsight patients indicate that they have not only lost phenomenal vision, but also all consciously accessible record of their performance. They cannot judge its quality, they cannot even distinguish between the highly significant performance shown in response to visual stimuli in their blind field and the chance level performance shown in response to stimuli confined to their blind spot (our own observations). ‘When shown his results he [patient D.B.] expressed great surprise, and reiterated that he was only guessing’ (Weiskrantz et al., 1974, p. 4); the patients ‘actually believed their performance was completely random’ (Pöppel et al., 1973, p. 296); the patient ‘had no awareness of her above-chance performance’ (Magnussen and Mathiesen, 1989, p. 727); the patient ‘claimed he was only guessing, and could hardly believe that his performance was above chance’ (Stoerig et al., 1985; p. 596).

This lack of conscious (as opposed to behaviourally demonstrable but unconscious) access to the processed visual information could well be a consequence of the loss of phenomenal representation. This hypothesis is in accordance with a recent result showing that normal subjects who were unable to see a stimulus in the test field could localize it with high accuracy, but rated their performance as poor (Kolb and Braun, 1995). This approach may open avenues to studying the effects of making stimuli sub-phenomenal in normal observers, thereby ruling out that the loss of conscious access to one’s performance is an effect of the patients’ lesions which is independent of the loss of phenomenal vision.

At present we do not know whether our blindsighted monkeys also experience themselves as guessing. If monkeys lose conscious access as patients do, the monkey Helen’s easily provoked insecurity could be seen as resulting from this lack of a conscious informedness of her visual capacities: ‘When she was running around a room she generally seemed as confident as any normal monkey. But the least upset and she would go to pieces: an unexpected noise, or even the presence of an unfamiliar person in the room was enough to reduce her to a state of blind confusion’ (Humphrey, 1992, p. 89).

In addition to the insecurity which can reasonably be assumed to result from having-to-guess, Stoerig (1996) has argued that the loss of a phenomenal representation may entail an inability both to construct visual objects and to consciously recognize them for what they are and what they mean. The absence of true form discrimination in blindsight (Weiskrantz, 1987; see Fig. 3) favours the notion that cortical blindness encompasses agnosia, as do Humphrey’s observations of the super-blindsight monkey Helen who was ‘a monkey who in a sense sees everything but recognizes nothing.’ (Humphrey, 1970, p. 334). While agnosia is a higher-order ‘psychic’ blindness (Seelenblindheit) which spares phenomenal vision and can leave patients with normal visual acuity, brightness discrimination, motion processing, and colour vision (Benson and Greenberg, 1969), cortical blindness (Rindenblindheit) would consequently always include agnosia. This suggestion agrees with William James’ original definition: ‘Hemianopic disturbance comes from lesion of either [occipital lobe], and total blindness, sensorial as well as psychic, from destruction of both’ (James, 1890, p. 47).

If this hypothesis gained support from further evidence, a function not just for conscious vision as such but for its particularly mysterious phenomenal level would follow: Without it, neither conscious recognition nor conscious records are possible.

Phenomenal vision in cortically blind visual fields

Phenomenal vision not generated by direct ocular stimulation

Does the loss of conscious vision that is caused by striate cortical destruction and deafferentation extend to other forms of phenomenal vision? In addition to the coloured, textured, moving objects that constitute our external visual world, we phenomenally see phosphenes and chromatosphenes, after-images and visual dreams, imagined and hallucinated images. These different phenomenal images can be produced in a variety of ways which range from electrical or magnetic stimulation to voluntary or involuntary endogenous activation. Whether, and to what extent, these images disappear in cortically blind visual fields has not been extensively investigated. However, three results are relevant to this issue.

The first regards visual imagery. Farah et al. (1992) measured the angle of the mind’s eye in a patient who had to undergo unilateral occipital lobectomy. Using Kosslyn’s (1978) method for estimating the angular extent of the imagery field, they had the patient judge the distance between herself and imagined objects such as cats, cars and bananas at the point at which they completely filled the internal, mental ‘screen’. When comparing the results from before and after the lobectomy, they found that the imagery field had shrunk in tandem with the visual field.

The second result regards after-images. Bender and Kahn (1949) attempted to induce after-images in a patient with a quadrantanopia caused by cerebral infaracts. The after-images that followed central fixation of the stimulus field were stimulus-dependent. With a large square stimulus, the after-image appeared larger and more complete than the seen part of the figure. When instead the large square was sub-divided into four smaller squares, no completion was observed, and the one square that fell into the patient’s blind field did not elicit an after-image. Marcel confirmed these results with
Cortical scotomata can be absolute as well as relative, the latter granting qualitatively reduced phenomenal representations of salient stimulus features, most commonly fast motion and high contrast. Colour vision was commonly lost, and white objects appeared indistinct. That such residual perception often returns after a period of absolute blindness was explained by the ‘local cerebral concussion’ caused by gunshot wounds and supposed to cause a transient blind field (Holmes, 1918). Relative or amblyopic defects were seen as indicative of incomplete lesions of the primary visual cortex, while absolute defects assumedly produced complete blindness in the corresponding part of the visual field.

This view can accommodate an enlargement of the functional visual field and a recovery from transient blindness, because damaged as opposed to destroyed striate cortical tissue can return to a state of (commonly diminished) function. Can it also accommodate the case of patient G.Y.?

Patient G.Y. suffered a craniocerebral trauma at age 8 years which caused an extended period of ‘semi coma’. The lesion destroyed the left primary visual cortex but did not extensively invade the surrounding extrastriate cortical areas. According to his recollection, the resultant hemianopia with an almost complete hemianopia (RH) experienced after-functional visual field and a recovery from transient blindness, because damaged as opposed to destroyed striate cortical tissue can return to a state of (commonly diminished) function. Can it also accommodate the case of patient G.Y.?

Patient G.Y. suffered a craniocerebral trauma at age 8 years which caused an extended period of ‘semi coma’. The lesion destroyed the left primary visual cortex but did not extensively invade the surrounding extrastriate cortical areas. According to his recollection, the resultant hemianopia with an almost complete hemianopia (RH) experienced after-functional visual field and a recovery from transient blindness, because damaged as opposed to destroyed striate cortical tissue can return to a state of (commonly diminished) function. Can it also accommodate the case of patient G.Y.?

Patient G.Y. suffered a craniocerebral trauma at age 8 years which caused an extended period of ‘semi coma’. The lesion destroyed the left primary visual cortex but did not extensively invade the surrounding extrastriate cortical areas. According to his recollection, the resultant hemianopia with an almost complete hemianopia (RH) experienced after-functional visual field and a recovery from transient blindness, because damaged as opposed to destroyed striate cortical tissue can return to a state of (commonly diminished) function. Can it also accommodate the case of patient G.Y.?

Patient G.Y. suffered a craniocerebral trauma at age 8 years which caused an extended period of ‘semi coma’. The lesion destroyed the left primary visual cortex but did not extensively invade the surrounding extrastriate cortical areas. According to his recollection, the resultant hemianopia with an almost complete hemianopia (RH) experienced after-functional visual field and a recovery from transient blindness, because damaged as opposed to destroyed striate cortical tissue can return to a state of (commonly diminished) function. Can it also accommodate the case of patient G.Y.?
he does not see the stimulus. He tries hard to find an appropriate description, but then again finds that ‘it’s impossible, like trying to explain seeing to a blind person’ (personal communication to P.S.).

GY can be aware of certain types of stimuli. Fast transients are particularly effective (Weiskrantz et al., 1995), whereas colours are invisible and can only be guessed. While this is similar in other patients who have had relative field defects from the onset, or who have developed areas of relative blindess in the course of prolonged testing as described earlier, GY is different in that his left striate cortex is entirely destroyed, or almost so. On our fMRI scans we found no clear evidence even of tissue spared at the occipital pole and corresponding to his macular sparing (R. Goebel, P. Stoeig, L. Muckli and W. Singer, unpublished data). It is therefore possible, but in view of the limits of the technology no more than possible, that GY has developed a type of conscious vision in the absence of ipsilesional striate cortex. Should this be confirmed, GY could teach us the extent of visual function possible after early unilateral destruction of V1.

The extent to which this visual function involves ipsilesional striate cortex, contralesional extrastriate cortex, or even contralesional striate cortex remains to be studied. As long as some functional striate cortex remains, it could conceivably participate in the mediation of visual information from non-topographically corresponding spatial positions. This hypothesis has gained support from a recent report showing that after a few months of wearing prisms that laterally reversed the visual field, the monkey’s striate cortical cells now responded to ipsi- as well as to contralateral visual field stimulation (Sugita, 1996) These cells were not selective for either orientation or direction of motion, but responded well to flashes. In view of these extraordinary findings it is feasible that any surviving striate cortex might participate in the processing of information from the blind parts of the visual field. We must await an unequivocal demonstration of conscious vision in the absence of all striate cortex.

Conclusion
The evidence shows that the effects of striate cortical destruction are very similar in man and monkey. The residual visual functions can be studied behaviourally in both species with experimental paradigms that differentiate visually guided behaviour, phenomenal vision, and self-assessment. Maybe in another 55 years it will be possible to plot their functional links and dissociations in a manner that would satisfy Klüver’s critical spirit.

Acknowledgements
It is a pleasure to acknowledge the help of Carolyne Le Mare, John Barbur, and Andreas Kleinschmidt in the preparation of the figures. We are particularly grateful to our colleagues who allowed us to present their published and unpublished material: Marie-Thérèse Perenin, John Barbur, Rainer Goebel, Nick Humphrey, Andreas Kleinschmidt, Lars Muckli, Arash Sahraie, Wolf Singer, and Larry Weiskrantz. We thank the Deutsche Forschungsgemeinschaft and the UK Medical Research Council for their continued research support. We also thank the McDonnell-Pew Oxford Cognitive Neuroscience Centre for a Network Grant.

References

Keating EG. Effects of prestriate and striate lesions on the monkey’s ability to locate and discriminate visual forms. Exp Neurol 1975; 47: 16–25.

Kosslyn SM. Measuring the visual angle of the mind’s eye. Cognit Psychol 1978; 10: 356–89.

Marcel AJ. Blindsight and shape perception: deficit of visual consciousness or of visual function? Brain 1997; 120. In press.

Pasik P, Pasik T, Krieger HP. Effects of cerebral lesions upon...

Riddoch G. Dissociation of visual perceptions due to occipital injuries, with especial reference to appreciation of movement. Brain 1917; 40: 15–57.

Received June 19, 1996. Accepted August 15, 1996